Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
-
Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
-
Roberts, Scott; Egner, Sébastien E (Ed.)
-
CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large- and small-aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput (9.4° field of view), large-aperture (5-m diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicates expected optical performance and mechanical tolerance.more » « less
-
We have demonstrated the fabrication of a monolithic, 5 m diameter, aluminum reflector with 17.4 µm root-mean-square surface error. The reflector was designed to avoid the problem of pickup due to scattering from panel gaps in a large, millimeter-wavelength telescope that will be used for measurements of the cosmic microwave background.more » « less
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Sidelobe modeling and mitigation for a three mirror anastigmat cosmic microwave background telescopeTelescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a three mirror anastigmat telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile.more » « less
-
We report three epochs of polarized images of M87* at 230 GHz using data from the Event Horizon Telescope (EHT) taken in 2017, 2018, and 2021. The baseline coverage of the 2021 observations is significantly improved through the addition of two new EHT stations: the 12 m Kitt Peak Telescope and the Northern Extended Millimetre Array (NOEMA). All observations result in images dominated by a bright, asymmetric ring with a persistent diameter of 43.9 ± 0.6 μas, consistent with expectations for lensed synchrotron emission encircling the apparent shadow of a supermassive black hole. We find that the total intensity and linear polarization of M87* vary significantly across the three epochs. Specifically, the azimuthal brightness distribution of the total intensity images varies from year to year, as expected for a stochastic accretion flow. However, despite a gamma-ray flare erupting in M87 quasi-contemporaneously to the 2018 observations, the 2018 and 2021 images look remarkably similar. The resolved linear polarization fractions in 2018 and 2021 peak at ∼5%, compared to ∼15% in 2017. The spiral polarization pattern on the ring also varies from year to year, including a change in the electric vector position angle helicity in 2021 that could reflect changes in the magnetized accretion flow or an external Faraday screen. The improved 2021 coverage also provides the first EHT constraints on jet emission outside the ring, on scales of ≲1 mas. Overall, these observations provide strong proof of the reliability of the EHT images and probe the dynamic properties of the horizon-scale accretion flow surrounding M87*.more » « less
An official website of the United States government
